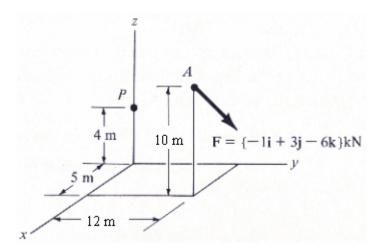
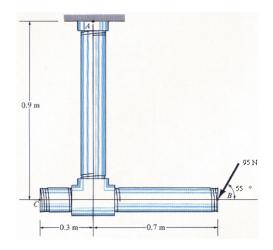

Engineering Statics Homework 2

1. Determine the magnitude and direction of the moment of the force at A about point P.

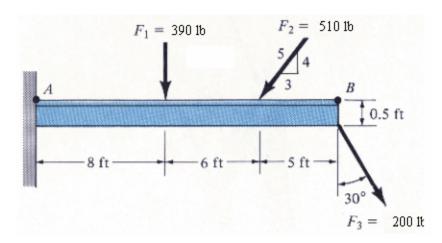

(a) What is the magnitude, in kN-m, of the moment of force about point *P*?

kN-m

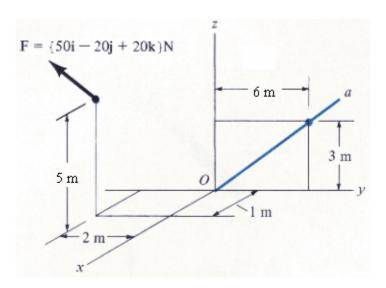

(b) What is the direction of the moment about point *P*?

(Clockwise , -z / Counterclockwise +z)

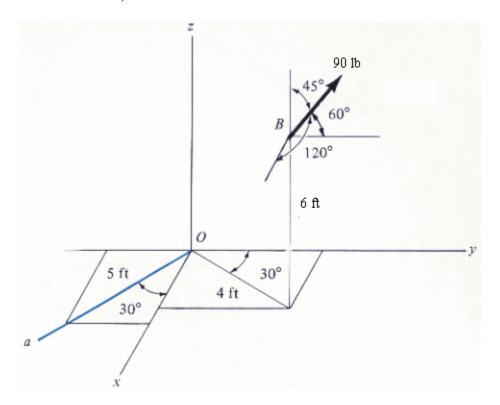
2. Determine the moment of the force at *A* about point *P*. Express the result as a Cartesian vector, in kN.



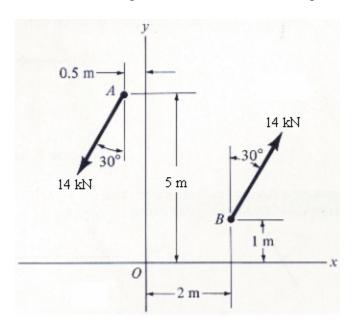
3. The 95-N force acts on the end of the pipe at B. Determine the moment of this force about point A, and the magnitude and direction of a horizontal force, applied at C, which produces the same result.


- (a) What is the magnitude, in N-m, of the moment of force about point A? _____N-m
- **(b)** What is the direction of the moment of force about *A*?
- (c) What is the magnitude of a horizontal force at C that produces the same result?
- (d) In what direction should the horizontal force at C be applied?

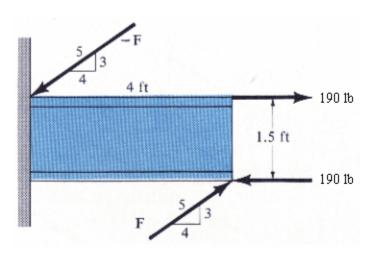
4. Determine the moment about point *B* of each of the three forces acting on the beam.



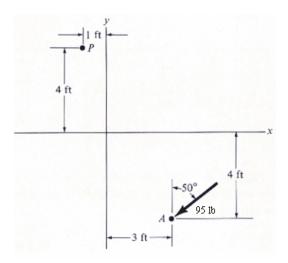
- (a) What is the magnitude, in ft-lb, of the moment of F_1 about B?
- **(b)** What is the direction of the moment of F_1 about B?
- (c) What is the magnitude, in ft-lb, of the moment of F_2 about B?
- (d) What is the direction of the moment of F_2 about B?
- (e) What is the magnitude, in ft-lb, of the moment of F_3 about B?
- (f) What is the direction of the moment of F_3 about B?


5. Determine the moment of the force **F** about the *Oa* axis. Express the result as a Cartesian vector, in N-m.

6. Determine the moment of the 90-lb force about the *Oa* axis. Express the result as a Cartesian vector, in ft-lb.

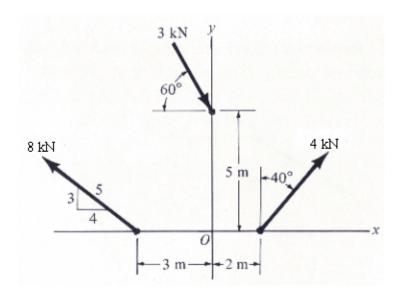


7. Determine the magnitude and sense of the couple moment.



- (a) What is the magnitude of the moment, in kN-m?
- **(b)** What is the direction of the moment?

8. Two couples act on the beam as shown. Determine the magnitude of ${\bf F}$ so that the resultant couple moment is 310 lb ft counterclockwise.



9. Replace the force at *A* by an equivalent force and couple moment at point *P*.

- (a) What is the equivalent force at *P* in Cartesian vector form?
- **(b)** What is the magnitude of the equivalent coupled moment at *P* in ft-lb?
- **(c)** What is the direction of the moment at *P*?

10. Replace the force system by a single force resultant and specify its coordinate point of application (x,0) on the xaxis.

- (a) What is the single force resultant in Cartesian vector form?
- **(b)** What is the *x* position of the single force resultant (on the *x*-axis)?